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Closed-Form Eigenfreguencies in Prolate
Spheroidal Conducting Cavity

Le-Wei Li, Senior Member, |EEE, Zhong-Cheng Li, and Mook-Seng Leong, Senior Member, |EEE

Abstract—I n thispaper, an efficient approach isproposed to an-
alyze the interior boundary-value problem in a spheroidal cavity
with perfectly conducting wall. Since the vector wave equations
are not fully separable in spheroidal coordinates, it becomes nec-
essary to double-check validity of the vector wave functions em-
ployed in analysis of the vector boundary problems. In this paper,
a closed-form solution has been obtained for the eigenfrequencies
Jaso based on TE and TM cases. From a series of numerical solu-
tionsfor these eigenfrequencies, it isobserved that the f,s0 varies
with the parameter £ among the spheroidal coordinates(n, &, ¢) in
theformof fuso(§) = fHS(O)[1+Q(1)/£2 +g(2)/£4+g(3)/£6+
---]. By means of the least squaresfitting technique, the values of
the coefficients, {1, g(*), g'®, ..., are determined numerically.
It providesanalytical resultsand fast computationsof the eigenfre-
quencies, and theresultsarevalid if £ islarge (e.g., &€ > 100).

Index Terms—Cavity resonance, eigenfrequency, nonlinear
fitting, numerical analysis, spheroidal wave functions.

I. INTRODUCTION

ALCULATION of eigenfrequencies in electromagnetic

(EM) cavitiesis useful in various applications such as the
design of resonators. However, analytical calculation of these
eigenfrequencies is severely limited by the boundary shape
of these cavities. In this paper, the interior boundary-value
problem in a prolate spheroidal cavity with perfectly con-
ducting wall is solved analytically. By applying boundary
conditions, it is possible to obtain an analytical expression of
the base eigenfrequencies f,so using spheroidal wave functions
[1]3] regardiess of whether the parameter ¢ = kd/2 is small
or large where £ denotes the wavenumber, while d signifiesthe
interfocal distance.

Aninspection of the plot of aseriesof f,50 values (confirmed
in [4]) indicates that variation of f,so where the coordinate pa-
rameter £ isof theform fueo(€) = fas(0)[14+9V /€249 /14
g® /¢85 + -..] when ¢ is small. By fitting the f,..0, ¢ evaluated
onto an equation of its derived form, the first four expansion
coefficients—g(?, ¢V, ¢(2 and ¢(* —are determined numeri-
cally using the least squares method. The method used to obtain
these coefficientsis direct and simple, although the assumption
of axial symmetry may restrict its applications to those eigen-
frequencies fusm, Wherem’ = 0.
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Fig. 1. Prolate spheroidal coordinates (1, £, ¢) and a conducting cavity.

Il. SPHEROIDAL COORDINATES AND SPHEROIDAL HARMONICS

The prolate spheroidal coordinates shown in Fig. 1 are re-
lated to rectangular coordinates by the following transformation

[13]:

2 =5 VE—E 1) cosd (18)
d .
y=5VI-)E 1) sin¢ (1b)
d
z 25775 (10)
with
—1<n<1l 1<8<oo 0L ¢ < 2m, (1d)
while the oblate spheroidal coordinates are related by
d
2 =5 V=)@ +1) cosg (28)
d .
y=5 VI =P)E+1) sing (2b)
d
z 25775 (20)
with
—1<n<1 0<¢{<o0 0<p<2nm (2d)
or
0<n<]l —w<f<oo 0L¢<L 27 (2¢)
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With these coordinates systems, the Helmholtz scalar wave
equation becomes separable. The solutions of the wave equation
are expressed in the following scalar wave functions:

cos
sin

= Srnn(cv U)Rmn(C, 5) m¢> (Sa)

Pmn

for prolate spheroidal coordinates and
Vun = Sun(=ic, 1) R (—ic, i€) " mé(3D)
for oblate spheroidal coordinates, respectively. The four func-

tions Srnn(cv 77), ann(cv 5)1 Srnn(_icv 77)1 and ann(_icv Lg)
satisfy the following ordinary differential equations:

d d
% |:(1 - 772) d_n Srnn(cv 77):|
+ |:)\mn - 62772 - 1711—2772:| Smn(c’ 77) =0 (4a)
d d
& €D R ©)
- [A ey ;_2 J R, £ =0 (4b)
and
d d .
|- 5 Sunteicn)
2
+ |:)\rnn +n - 772} Smn(—ic,n) =0 (59
% {(52 +1) d% R (—ic, ig)}
- |:)\rnn_62§2_ %} ann(_icv LS) =0. (5b)

Ill. THEORY AND FORMULATION

A. Background Theory

Theprolate spheroidal cavity under considerationisshownin
Fig. 1. Inview of the fact that M athematica handles only vector
differential operations in the prolate spheroidal coordinatesin
accordance with the notations used in the book by Moon and
Spencer [5, pp. 28-29], a temporary change of coordinates is
necessary.

As noted by Moon and Spencer [5], the vector Helmholtz
equation ismore complicated than the scalar counterpart, and its
solution using the variable-separation principle may sometimes
cause new problems. Thisisespecially truein rotational systems
like that of the spherical coordinates or spheroidal coordinates.
In spheroidal coordinates, the solution to vector boundary-value
problemsisfurther complicated by the fact that the vector wave
equation is not exactly separable in spheroidal coordinates. Al-
though another more general analysis has been performed using
the vector wave functions, formed by operating on the scalar
spheroidal wave functions with vector operators, the validity of
the results obtained is doubtful. In view of these limitations,
several assumptions are made in the formulation of the current
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boundary problem in order to provide atruer and more accurate
picture.

B. Derivation

With axial symmetry assumed, it is possible to separate the
field components into ¢, E,, and H, for the TM mode, and
H¢, H,, and E, for the TE mode.

First, the TM mode is considered. With axial symmetry, Hy
can be assumed simply as

Hy = F(c, §)G(c, n). (6)
By applying the Maxwell equations
oB
VxE= 5 (79)
oD
VxH= e (7b)

and using theformulation of V x X inthe spheroidal coordinates
where

W(9e90) Y% E(gn9s) Y% Plgnge) ™
0 0 0

Xo(gn)t? Xe(g)? Xp(ge)'?
with X being either £ or H, and
_ d2 (52 _ 772)
9y = W (93
d2 (52 _ 772)
ge 4(€2 — 1) (9b)
d2
g6 = (1= ) (& - 1) (%)

the following equations can be obtained:

82%2’5) (€ =1)+2¢ %2’@

- {(62 + Q) — FE + & 1_ J F(c,&)=0 (10a)
82?9(7776;77) (1—=7") =29 %ﬁ;m

— {(c2 + mn) — 07 F T 772} G(e,n) =0. (10b)

In the case when the semimajor axis of the spheroidal sur-
face is close to the semiminor axis (d/2 = va? — 1? < 1),
the parameter ¢? (c = kd/2) used in the summation with a,,
will diminish due to the decreasing value of d2. Thus, (10a) and
(10b) will be reduced to

L §) OF(c, §)
e (€ -1)+2¢ o
= | Q%mn T 0252 + 521_ 1 F(C, S) =0 (11&)
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9?G(c, n) 5 9G(c, n)
a2 (1-n")—2n “on
— | Y — 62772 + 1_ 772 G(Cv 77) = 0 (11b)

A comparison of (10a) and (10b) with [3, egs. (2.8a) and
(2.8b) ] indicates that the solutions to the differential equations
are, in fact, given by

F(C, 5) :Bann(ca 5)
G(C, 7’]) :Cnsln(ca 77)

(The radia and angular functions of the first kind with . = 1
where, and subsequently, the superscript (1) has been omitted.)
In the equations above, B,, and C,, are unknowns to be deter-
mined from the EM boundary conditions. Hence, the magnetic
field component for the TM modes can, in fact, be expressed as

(12a)
(12b)

qu = BnCann(cv g)Sln(cv 77) (13)

and the electric field is, therefore, expressed as

4 5 Rln(c’ 5)

Jwer/1—n
y [BnCn\/—l—UQ IR nﬂ (14a)
Ui

A 3]
2 B,C, —
Jwe &

E: =

B, = |Bunle, OV = 1] (140)

where
_ 2
A -1 -2

To obtain the resonance condition, £, must be zero at the
surface £ = & of the perfectly conducting spheroidal cavity.
From (14b), this requires that

9 2
ER |:R1n(cv HVE - 1} lg:go

Thus, by finding the roots of the equation above, the eigen-
frequency of the TM mode can be found.

By principle of duality, the fields components for the TE
mode can be obtained by substituting £, for H,,, —H, for E,
and —H,, for E,, respectively. Hence, the resonance condition
for the TE modes can be obtained by setting £, = 0 at £ = &.
From (13), the boundary condition requires that

Rin(e, §)le=e, = 0.

A

=0. (15)

(16)

IV. NUMERICAL RESULTS FOR TE MODES
A. Numerical Calculation

Using the package created in [3], the zeros of the radial
function, as required by the resonance condition in (16), can
be found in a straightforward way. This is because coding the
radia function into a package offers convenience of treating
Rﬁ,ll%(c, &) asifitisnormal function like cosineand sine. Hence,
the command FindRoot in Mathematica can be employed to

solve directly for the zeros of R,(,%(c, £). This is achieved
by means of the Newton—Raphson method in the software
program.

In our program, the iterations will stop when arelative error
less than 10~¢ is achieved. As in any Newton’s method im-
plementation, an initial guessis required. The spherical Bessel
function zeros of various orders are assigned as the first guess.
This will provide faster convergence since, in the case consid-
ered, the spheroidal coordinates can actually be approximated
roughly by the spherical coordinates. From Stratton et al. [2],
the resonance condition is given by j,,(kr) = 0 in the spherical
coordinates. Under the circumstance considered, ¢£ (in sphe-
roidal coordinates) — kr (in spherical coordinated), thus, the
required values of c£ must be in the region around zeros of the
spherical Bessel functions.

It is observed from practical calculations that, in the region
when ¢£ is large, FindRoot using Newton’s method is capable
of evaluating the zeros accurately at avery high speed. However,
at the same time, it is also observed that the rate will decrease
drastically intheregion where c€ issmall. This can be explained
by the proximity of theinitial guess. A series of zeros, spanning
therangefrom ¢ = 100 to £ = 1000, were collected at irregular
intervals.

From the research done by Kokkorakisand Roumeliotis[6], it
can be shown, after some manipul ations, that the series of values
of ¢£ that satisfies Ry,,(c, &) = 0, are, in fact, governed by an
equation of the form

1+&<i)+@<i)2+@<1>3+...
g0 \ &2 g0 \ &2 g0\ &2

(17)

o6& =go

where go, 91, and g2, ...
determined.

From (17), the following equation relating the eigenfre-
guency of the spheroidal cavity can be obtained:

_ (1), e (1)
Too = e iz [” wla)o(s)

g (1°
T <§2> "

Thus, by determining the coefficients g1, g2, g3, ..., @
closed-form formula for the eigenfrequency of a spheroidal
cavity is obtained. For a given spheroidal dimension expressed
in terms of d and &, the eigenfrequency of a spheroidal cavity
can be computed quickly and accurately using (18)

Hitherto, the coefficients have been solved only by Kokko-
rakisand Roumeliotis[6]. However, only thefirst two expansion
coefficients (g; and g») of the seriesin (17) are given in their
research. Moreover, except for the first coefficient g;, which
can be obtained directly, the second coefficients can only be
obtained by using a relatively complicated equation. Further-
more, the equation is obtained after a very lengthy derivation
that spanned over than 50 equations.

For the purpose of numerical comparison, a more direct and
simpler approach for obtaining the coefficients is employed

, are unknown coefficients to be

(18)
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Fig. 2. Valuesof c¢ (vertical axis) satisfying: 1) R{}(c, £) = 0 and 2) the
fitted equation with g, g1, and g» determined against ¢ (horizontal axis).

TABLE |
EXPANSION COEFFICIENTS go, g1, g2, AND g3z FOR TE,.o MODES
(s = 1,2, AND 3)

n o m g=1 8§ =2 s=3
go 1 0 | 4.493410 7.725252 10.904120
2 0 | 5763460 9.095012 12.322940
3 0 |6.987932 10.417120 13.698020
4 0 | 8.182562 11.704910 15.039660

g1/90 1 0 | 0.400000 0.400000 0.400000
2 0 |0.285714 0.285714 0.285714

3 0 | 0.266667 0.266667  0.266667

4 0 | 0.259752 0.259752 0.259785

g2/g90 1 0 [ 0.318057  0.405000 0.540398
2 0 | 0.234662 0.330848 0.467022

3 0 | 0.109708 0.0069634 -0.015400

4 0 | 0.100111 0.057204  0.001593

g93/ge 1 0 | 0.000039 0.000049  0.000052
2 0 ] 0.000033 0.000041 0.000065

3 0 | 0.000005 0.000001 0.000007

4 0 | 0.000006 0.000008 0.000001

here. First, the series of values of ¢ that satisfy the condition
Ry,(c, &) = 0 over the range of & mentioned earlier are
collected and placed in a list. By means of the least squares
method, these values of ¢£ and £ are then fitted onto a function
of the form given in (17). In this way, the parameters go, g1,
g2, 93, ..., Can be determined readily. In Mathematica, this
is accomplished simply by two short statement commands.
To see the difference between the analytical and numerical
approaches, we plotted in Fig. 2 the values of ¢£ (vertical axis)
satisfying: 1) R{Y(c, &) = 0 (denoted by “Original”) and
2) the fitted equation with go, g1, and g» (denoted by “Fitted”)
determined against £ (horizontal axis). A fairly good agreement
is observed.

B. Results and Comparison

The values for the coefficients go, g1, g2, and gs for the TE
modes are calculated and tabulated in Tables | and Il. Kokko-
rakis and Roumeliotis solved for the same set of coefficients
in alengthy and complicated manner. A complete, but smaller
table has been published in their paper [6].

By comparing this paper's tables and Kokkorakis and
Roumeliotis's tabulated results, it is first observed that the
first two coefficients produced with this method agree with
Kokkorakis and Roumeliotis's evaluations to a minimum of
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TABLE I
EXPANSION COEFFICIENTS ¢q, g1, g2, AND g3 FOR TE,q MODES
(s = 4,5, AND 6)

n o m s=4 s=25 s=26
g0 1 0 | 14.066190 17.220750 20.371300
2 0 | 155146000 18.689040 21.853870
3 0 | 16.923620 20.121810 23.304250
4 0 [ 18.301260 21.525420 24.727570
91/g0 1 0 | 0.400000 0.400000 0.400000
2 0 | 0.285729 0.285716 0.285729
3 0 | 0.266667 0.268331 0.266667
4 0 | 0.259741 0.259751 0.259764
g2/90 1 0 | 0.720727 0.945740 1.216530
2 0 | 0.639935 0.848433 1.098372
3 0 |-0.051312 -0.272904  -0.258691
4 0 | -0.060967 -0.139916  -0.226860
93/go 1 0 | 0.000079 0.000117  0.000117
2 0 | 0.000090 0.000119 0.000132
3 0 [ -0.000007 -0.000010  -0.000025
4 0 1 -0.000008 -0.000006  -0.000031

five significant digits. This shows the capability of the method
to produce equally accurate results by means of asimpler way.
Second, it is almost impossible to produce the coefficients gs,
g4, and g5 using Kokkorkis and Roumeliotis's method. The
amount of analytic computation required using the method
makes it impractical. On the other hand, the method presented
here can be used to produce these coefficients effortlessly and
amost instantly, without sacrificing any accuracy. Finally, in
[6], it is claimed that the coefficients are valid in the case when
£ > 1. However, there is no definite definition of how small £
must be for the coefficients to be valid. In this paper, the valid
range of ¢ has been determined, numerically, tobe 1/¢ < 0.01
forn =1,2and 1/£ < 0.005 for n = 3, 4. For other higher
order n, the valid range of £ will have to be reduced further.

V. NUMERICAL RESULTS FOR TM MODES
A. Numerical Calculation

Closed-form solutions of the eigenfrequenciesfor TM modes
are obtained in a similar fashion. The variation of ¢£ with £
bears an identical form to the (18), i.e., the eigenfrequency for
the TM modes can be expressed in a form identical to those
shown in (18), except that now, gy has to be changed to satisfy
the equation

jttao) = LN g

£=go

(19)

where 5, () represents the spherical Bessel functions.

By comparison with the TE modes, two differencesneed to be
considered in the programming aspect. First, the resonance con-
dition has to be atered. Previoudly, for the TE modes, the con-
dition stated in (16) is satisfied. In the TM modes, the boundary
condition requires that (15) be satisfied. At the surface £ = &,
the boundary condition becomes

5 (Funle. 0vE=T))

B€ =0.

(20)
§=&o
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Fig. 3. Vaues of cf (vertica axis) satisfying: 1) 9/(9¢)(RE (¢, €)
V& —1) = 0 and 2) the fitted equation with gq, g1, and g» determined
againgt ¢ (horizontal axis).

TABLE Il
EXPANSION COEFFICIENTS ¢, g1, g2, AND gz FOR TM,,;¢ MODES
(s = 1,2, AND 3).

n m s=1 s=2 s=3
go 1 0 | 2743707 6.116764 9.316616
2 0 | 3.870239 7.443087 10.713010
3 0 |4.973420 8.721750 12.063590
4 0 | 6.061949 9.967547 13.380120
gi/ago 1 0 | 0.472361 0.411295 0.404717
2 0 10317536 0.291498  0.288341
3 0 | 0.287607 0.270829  0.268664
4 0] 02752560 0.263014 0.261515
g2/90 1 0 | 0.341865 0.365769  0.473216
2 0 §0.241764 0.287367 0.398629
3 0] 0.146803 0.094815 0.045170
4 0] 0.127803 0.078719  0.002503
g3/go 1 0 | 0.000047 0.000050 0.000064
2 0 | 0.000007 0.000039 0.000054
3 0 | 0.000005 0.000003 0.000001
4 0 | 0.000017 0.000011 0.000001

With the new boundary condition, the zeros of the
left-hand-side term of (15) have to be found instead of
that of the radial function. In the program, the zeros of the
radial derivative expression in (15) are evaluated using the same
Newton’s method. However, the function is now different and,
thus, soistheinitial guess. For the TE modes, the various orders
of zeros of the functions in (19) are used instead. To see the
difference between the analytical and numerical approaches,
we plotted in Fig. 3 the values of ¢£ (vertical axis) satisfying:
1) 9/(9¢)(RY (e, &) /&2 —1) = 0 (denoted by “Original”)
and 2) the fitted equation with gg, g1, and g» (denoted by
“Fitted”) determined against £ (horizontal axis). A fairly good
agreement is also observed.

B. Results and Comparison

Employing the same technique to determine the expansion
coefficients g1, g2, gs, - - -, aseries of ¢£ values that forces the
function in (15) to approach zero is collected and fitted into an
equation of the form in (18). In this way, the various expansion
coefficients are determined. Tabulations of various values ob-
tained using this method for the TM modes are made and shown
in Tables 111 and IV.

TABLE IV
EXPANSION COEFFICIENTS ¢, ¢1, g2, AND gz FOR TM,;g MODES
(s = 4,5, AND 6)

n om s=4 s=25 s=06
g0 1 0 | 12.485940 15.643870 18.796250
2 0 | 13.920520 17.102740 20.272000
3 0 | 15.313560 18.524210 21.713930
4 0 ] 16.674150 19.915400 23.127780
g1/g0 1 0 | 0.402599 0.401648 0.401139
2 0 ] 0.287621 0.286712 0.286420
3 0 | 0.267865 0.267472 0.267247
4 0 ]0.260747  0.260430 0.260245
g2/g0 1 0 | 0.629327  0.831403 1.078787
2 0 | 0.498710  0.741883 0.971928
3 0 ]-0.015979 -0.090035 -0.177032
4 0 | -0.029849 -0.100678 -0.183054
gsfgo 1 0 | 0.000086 0.000113 0.000147
2 0 | 0.000033 0.000008 0.000076
3 0 ] 0.000002 -0.000012 -0.000024
4 0 | -0.000003 -0.000014 -0.000025

The same observation and conclusion asin [6] can be drawn
upon viaacomparison of the two tables for the TM modes with
those for the TE modes. Hence, they are not repeated here.

V1. CONCLUSION AND DISCUSSION

In this paper, one of the many possible applications of
the spheroidal wave function package has been presented in
detail, i.e., solving an interior boundary-value problem. The
convenience of coding in Mathematica package is manifested
by the ability of this program to find the zeros of functions
with complex argument (such as radia functions) simply with
one statement. This problem, by itself, is a highly interesting
topic. Due to the preoccupation with the more important issue
of completing the Mathematica package, the axial symmetry is
assumed so as to reduce the complexity of the problems. The
more general and practical problem in which the assumption
of axial symmetry is removed is a topic worth looking into for
future investigations. As indicated in [3], the study of oblate
spheroidal cavities can be achieved in a similar way or by
symbolic transfer between the oblate and prolate coordinates.
However, it should be noted that the assumed axial symmetry
iskept in the ~-direction and the assumed field components are
not changed in the symbolic programming.
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