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Closed-Form Eigenfrequencies in Prolate
Spheroidal Conducting Cavity

Le-Wei Li, Senior Member, IEEE, Zhong-Cheng Li, and Mook-Seng Leong, Senior Member, IEEE

Abstract—In this paper, an efficient approach is proposed to an-
alyze the interior boundary-value problem in a spheroidal cavity
with perfectly conducting wall. Since the vector wave equations
are not fully separable in spheroidal coordinates, it becomes nec-
essary to double-check validity of the vector wave functions em-
ployed in analysis of the vector boundary problems. In this paper,
a closed-form solution has been obtained for the eigenfrequencies
ns0 based on TE and TM cases. From a series of numerical solu-

tions for these eigenfrequencies, it is observed that the ns0 varies
with the parameter among the spheroidal coordinates ( , , ) in
the form of ns0( )= ns(0)[1+

(1) 2+ (2) 4+ (3) 6+
]. By means of the least squares fitting technique, the values of

the coefficients, (1), (2), (3), . . ., are determined numerically.
It provides analytical results and fast computations of the eigenfre-
quencies, and the results are valid if is large (e.g., 100).

Index Terms—Cavity resonance, eigenfrequency, nonlinear
fitting, numerical analysis, spheroidal wave functions.

I. INTRODUCTION

CALCULATION of eigenfrequencies in electromagnetic
(EM) cavities is useful in various applications such as the

design of resonators. However, analytical calculation of these
eigenfrequencies is severely limited by the boundary shape
of these cavities. In this paper, the interior boundary-value
problem in a prolate spheroidal cavity with perfectly con-
ducting wall is solved analytically. By applying boundary
conditions, it is possible to obtain an analytical expression of
the base eigenfrequencies using spheroidal wave functions
[1]–[3] regardless of whether the parameter is small
or large where denotes the wavenumber, while signifies the
interfocal distance.

An inspection of the plot of a series of values (confirmed
in [4]) indicates that variation of where the coordinate pa-
rameter is of the form

when is small. By fitting the , evaluated
onto an equation of its derived form, the first four expansion
coefficients— , , and —are determined numeri-
cally using the least squares method. The method used to obtain
these coefficients is direct and simple, although the assumption
of axial symmetry may restrict its applications to those eigen-
frequencies , where .
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Fig. 1. Prolate spheroidal coordinates (�, �, �) and a conducting cavity.

II. SPHEROIDAL COORDINATES AND SPHEROIDAL HARMONICS

The prolate spheroidal coordinates shown in Fig. 1 are re-
lated to rectangular coordinates by the following transformation
[1]–[3]:

(1a)

(1b)

(1c)

with

(1d)

while the oblate spheroidal coordinates are related by

(2a)

(2b)

(2c)

with

(2d)

or

(2e)
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With these coordinates systems, the Helmholtz scalar wave
equation becomes separable. The solutions of the wave equation
are expressed in the following scalar wave functions:

(3a)

for prolate spheroidal coordinates and

(3b)

for oblate spheroidal coordinates, respectively. The four func-
tions , , , and
satisfy the following ordinary differential equations:

(4a)

(4b)

and

(5a)

(5b)

III. THEORY AND FORMULATION

A. Background Theory

The prolate spheroidal cavity under consideration is shown in
Fig. 1. In view of the fact that Mathematica handles only vector
differential operations in the prolate spheroidal coordinates in
accordance with the notations used in the book by Moon and
Spencer [5, pp. 28–29], a temporary change of coordinates is
necessary.

As noted by Moon and Spencer [5], the vector Helmholtz
equation is more complicated than the scalar counterpart, and its
solution using the variable-separation principle may sometimes
cause new problems. This is especially true in rotational systems
like that of the spherical coordinates or spheroidal coordinates.
In spheroidal coordinates, the solution to vector boundary-value
problems is further complicated by the fact that the vector wave
equation is not exactly separable in spheroidal coordinates. Al-
though another more general analysis has been performed using
the vector wave functions, formed by operating on the scalar
spheroidal wave functions with vector operators, the validity of
the results obtained is doubtful. In view of these limitations,
several assumptions are made in the formulation of the current

boundary problem in order to provide a truer and more accurate
picture.

B. Derivation

With axial symmetry assumed, it is possible to separate the
field components into , , and for the TM mode, and

, , and for the TE mode.
First, the TM mode is considered. With axial symmetry,

can be assumed simply as

(6)

By applying the Maxwell equations

(7a)

(7b)

and using the formulation of in the spheroidal coordinates
where

(8)

with being either or , and

(9a)

(9b)

(9c)

the following equations can be obtained:

(10a)

(10b)

In the case when the semimajor axis of the spheroidal sur-
face is close to the semiminor axis ,
the parameter ( ) used in the summation with
will diminish due to the decreasing value of . Thus, (10a) and
(10b) will be reduced to

(11a)
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(11b)

A comparison of (10a) and (10b) with [3, eqs. (2.8a) and
(2.8b) ] indicates that the solutions to the differential equations
are, in fact, given by

(12a)

(12b)

(The radial and angular functions of the first kind with
where, and subsequently, the superscript (1) has been omitted.)
In the equations above, and are unknowns to be deter-
mined from the EM boundary conditions. Hence, the magnetic
field component for the TM modes can, in fact, be expressed as

(13)

and the electric field is, therefore, expressed as

(14a)

(14b)

where

To obtain the resonance condition, must be zero at the
surface of the perfectly conducting spheroidal cavity.
From (14b), this requires that

(15)

Thus, by finding the roots of the equation above, the eigen-
frequency of the TM mode can be found.

By principle of duality, the fields components for the TE
mode can be obtained by substituting for , for ,
and for , respectively. Hence, the resonance condition
for the TE modes can be obtained by setting at .
From (13), the boundary condition requires that

(16)

IV. NUMERICAL RESULTS FOR TE MODES

A. Numerical Calculation

Using the package created in [3], the zeros of the radial
function, as required by the resonance condition in (16), can
be found in a straightforward way. This is because coding the
radial function into a package offers convenience of treating

as if it is normal function like cosine and sine. Hence,
the command FindRoot in Mathematica can be employed to

solve directly for the zeros of . This is achieved
by means of the Newton–Raphson method in the software
program.

In our program, the iterations will stop when a relative error
less than 10 is achieved. As in any Newton’s method im-
plementation, an initial guess is required. The spherical Bessel
function zeros of various orders are assigned as the first guess.
This will provide faster convergence since, in the case consid-
ered, the spheroidal coordinates can actually be approximated
roughly by the spherical coordinates. From Stratton et al. [2],
the resonance condition is given by in the spherical
coordinates. Under the circumstance considered, (in sphe-
roidal coordinates) (in spherical coordinated), thus, the
required values of must be in the region around zeros of the
spherical Bessel functions.

It is observed from practical calculations that, in the region
when is large, FindRoot using Newton’s method is capable
of evaluating the zeros accurately at a very high speed. However,
at the same time, it is also observed that the rate will decrease
drastically in the region where is small. This can be explained
by the proximity of the initial guess. A series of zeros, spanning
the range from to , were collected at irregular
intervals.

From the research done by Kokkorakis and Roumeliotis [6], it
can be shown, after some manipulations, that the series of values
of that satisfies , are, in fact, governed by an
equation of the form

(17)

where , , and are unknown coefficients to be
determined.

From (17), the following equation relating the eigenfre-
quency of the spheroidal cavity can be obtained:

(18)

Thus, by determining the coefficients , , , , a
closed-form formula for the eigenfrequency of a spheroidal
cavity is obtained. For a given spheroidal dimension expressed
in terms of and , the eigenfrequency of a spheroidal cavity
can be computed quickly and accurately using (18)

Hitherto, the coefficients have been solved only by Kokko-
rakis and Roumeliotis [6]. However, only the first two expansion
coefficients ( and ) of the series in (17) are given in their
research. Moreover, except for the first coefficient , which
can be obtained directly, the second coefficients can only be
obtained by using a relatively complicated equation. Further-
more, the equation is obtained after a very lengthy derivation
that spanned over than 50 equations.

For the purpose of numerical comparison, a more direct and
simpler approach for obtaining the coefficients is employed
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Fig. 2. Values of c� (vertical axis) satisfying: 1) R (c; �) = 0 and 2) the
fitted equation with g , g , and g determined against � (horizontal axis).

TABLE I
EXPANSION COEFFICIENTS g , g , g , AND g FOR TE MODES

(s = 1; 2; AND 3)

here. First, the series of values of that satisfy the condition
over the range of mentioned earlier are

collected and placed in a list. By means of the least squares
method, these values of and are then fitted onto a function
of the form given in (17). In this way, the parameters , ,

, , , can be determined readily. In Mathematica, this
is accomplished simply by two short statement commands.
To see the difference between the analytical and numerical
approaches, we plotted in Fig. 2 the values of (vertical axis)
satisfying: 1) (denoted by “Original”) and
2) the fitted equation with , , and (denoted by “Fitted”)
determined against (horizontal axis). A fairly good agreement
is observed.

B. Results and Comparison

The values for the coefficients , , , and for the TE
modes are calculated and tabulated in Tables I and II. Kokko-
rakis and Roumeliotis solved for the same set of coefficients
in a lengthy and complicated manner. A complete, but smaller
table has been published in their paper [6].

By comparing this paper’s tables and Kokkorakis and
Roumeliotis’s tabulated results, it is first observed that the
first two coefficients produced with this method agree with
Kokkorakis and Roumeliotis’s evaluations to a minimum of

TABLE II
EXPANSION COEFFICIENTS g , g , g , AND g FOR TE MODES

(s = 4; 5; AND 6)

five significant digits. This shows the capability of the method
to produce equally accurate results by means of a simpler way.
Second, it is almost impossible to produce the coefficients ,

, and using Kokkorkis and Roumeliotis’s method. The
amount of analytic computation required using the method
makes it impractical. On the other hand, the method presented
here can be used to produce these coefficients effortlessly and
almost instantly, without sacrificing any accuracy. Finally, in
[6], it is claimed that the coefficients are valid in the case when

. However, there is no definite definition of how small
must be for the coefficients to be valid. In this paper, the valid
range of has been determined, numerically, to be
for and for . For other higher
order , the valid range of will have to be reduced further.

V. NUMERICAL RESULTS FOR TM MODES

A. Numerical Calculation

Closed-form solutions of the eigenfrequencies for TM modes
are obtained in a similar fashion. The variation of with
bears an identical form to the (18), i.e., the eigenfrequency for
the TM modes can be expressed in a form identical to those
shown in (18), except that now, has to be changed to satisfy
the equation

(19)

where represents the spherical Bessel functions.
By comparison with the TE modes, two differences need to be

considered in the programming aspect. First, the resonance con-
dition has to be altered. Previously, for the TE modes, the con-
dition stated in (16) is satisfied. In the TM modes, the boundary
condition requires that (15) be satisfied. At the surface ,
the boundary condition becomes

(20)
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Fig. 3. Values of c� (vertical axis) satisfying: 1) @=(@�)(R (c; �)p
� � 1 ) = 0 and 2) the fitted equation with g , g , and g determined

against � (horizontal axis).

TABLE III
EXPANSION COEFFICIENTS g , g , g , AND g FOR TM MODES

(s = 1; 2; AND 3).

With the new boundary condition, the zeros of the
left-hand-side term of (15) have to be found instead of
that of the radial function. In the program, the zeros of the
radial derivative expression in (15) are evaluated using the same
Newton’s method. However, the function is now different and,
thus, so is the initial guess. For the TE modes, the various orders
of zeros of the functions in (19) are used instead. To see the
difference between the analytical and numerical approaches,
we plotted in Fig. 3 the values of (vertical axis) satisfying:
1) (denoted by “Original”)
and 2) the fitted equation with , , and (denoted by
“Fitted”) determined against (horizontal axis). A fairly good
agreement is also observed.

B. Results and Comparison

Employing the same technique to determine the expansion
coefficients , , , , a series of values that forces the
function in (15) to approach zero is collected and fitted into an
equation of the form in (18). In this way, the various expansion
coefficients are determined. Tabulations of various values ob-
tained using this method for the TM modes are made and shown
in Tables III and IV.

TABLE IV
EXPANSION COEFFICIENTS g , g , g , AND g FOR TM MODES

(s = 4; 5; AND 6)

The same observation and conclusion as in [6] can be drawn
upon via a comparison of the two tables for the TM modes with
those for the TE modes. Hence, they are not repeated here.

VI. CONCLUSION AND DISCUSSION

In this paper, one of the many possible applications of
the spheroidal wave function package has been presented in
detail, i.e., solving an interior boundary-value problem. The
convenience of coding in Mathematica package is manifested
by the ability of this program to find the zeros of functions
with complex argument (such as radial functions) simply with
one statement. This problem, by itself, is a highly interesting
topic. Due to the preoccupation with the more important issue
of completing the Mathematica package, the axial symmetry is
assumed so as to reduce the complexity of the problems. The
more general and practical problem in which the assumption
of axial symmetry is removed is a topic worth looking into for
future investigations. As indicated in [3], the study of oblate
spheroidal cavities can be achieved in a similar way or by
symbolic transfer between the oblate and prolate coordinates.
However, it should be noted that the assumed axial symmetry
is kept in the -direction and the assumed field components are
not changed in the symbolic programming.
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